DTA

Archivio Digitale delle Tesi e degli elaborati finali elettronici

 

Tesi etd-05222024-153144

Tipo di tesi
Corso Ordinario Secondo Livello
Autore
MICHELIS, FILIPPO
URN
etd-05222024-153144
Titolo
Nonnegative Matrix Factorization with Sparse Inverse Covariance
Struttura
Classe Scienze Sociali
Corso di studi
SCIENZE ECONOMICHE E MANAGERIALI - SCIENZE ECONOMICHE E MANAGERIALI
Commissione
relatore Prof.ssa CHIAROMONTE, FRANCESCA
Presidente Prof. IRALDO, FABIO
Tutor Prof. BELLINI, NICOLA
Membro Prof. FAGIOLO, GIORGIO
Membro Prof. TESTA, FRANCESCO
Membro Prof.ssa ANNUNZIATA, ELEONORA
Parole chiave
  • Nessuna parola chiave trovata
Data inizio appello
14/06/2024;
Disponibilità
completa
Riassunto analitico
Nonnegative matrix factorization (NMF) has become increasingly popular as a powerful method for clustering and latent factor modeling. It decomposes data into a combination of latent fundamental parts, making it effective for dimensionality reduction. Previous research has primarily focused on obtaining meaningful parts, by manifold regularization, sparseness constraints, or orthogonality, without ever modeling co-occurrence patterns directly. A new NMF method is presented that achieves meaningful parts considering how they co-occur. Attention is shifted to the relationships within parts by modeling the conditional independence relationships among them. To accomplish this, a novel regularization term is proposed that induces sparsity on the inverse covariance matrix of the latent factors. The method performance is assessed through extensive simulations and a real data case study.
File