DTA

Archivio Digitale delle Tesi e degli elaborati finali elettronici

 

Tesi etd-10272022-094720

Tipo di tesi
Corso Ordinario Secondo Livello
Autore
GELSI, FEDERICO
URN
etd-10272022-094720
Titolo
A comparative multimodal stock market prediction using ECB press conferences
Struttura
Cl. Sc. Sociali - Scienze Economiche
Corso di studi
SCIENZE ECONOMICHE E MANAGERIALI - SCIENZE ECONOMICHE E MANAGERIALI
Commissione
Tutor Prof.ssa NUTI, SABINA
Relatore Prof. RAGUSA, GIUSEPPE
Membro Prof. PICCALUGA, ANDREA MARIO CUORE
Tutor Prof. TENUCCI, ANDREA
Tutor Prof. BELLINI, NICOLA
Membro Dott.ssa CANTARELLI, PAOLA
Membro Prof. IRALDO, FABIO
Parole chiave
  • European Central Bank
  • Forecasting
  • Multimodality
  • Neural Networks
Data inizio appello
02/12/2022;
Disponibilità
parziale
Riassunto analitico
Predicting stock market movements is a challenging task that has been extensively researched in the literature. In this study, we have two objectives. The first is to explore the possibility of successfully predicting market surprises after the European Central Bank (ECB) press conferences through a multimodal approach that exploits audio and transcripts. The second, functional to the former, is creating the first Multimodal Aligned database of ECB Press Conferences (ECB - MAPC) to lay the foundations for further multimodal research on central bank communication. For the predictions, we use a two-stage approach based on a first extraction of context-dependent speech features and a second stage, where the actual forecast takes place. We then compare the predictive performance of multiple machine and deep learning models, finding that good levels of accuracy can be achieved. The results also show that multimodality is crucial for decreasing prediction error and that not all market indices are equally predictable.
File