DTA

Archivio Digitale delle Tesi e degli elaborati finali elettronici

 

Tesi etd-11052020-165820

Tipo di tesi
Corso Ordinario Secondo Livello
Autore
ROSSI, FEDERICO
URN
etd-11052020-165820
Titolo
Provincialising Diversity. Diversification and polarisation in Italian New Immigration Destinations
Struttura
Cl. Sc. Sociali - Scienze Politiche
Corso di studi
SCIENZE POLITICHE - SCIENZE POLITICHE
Commissione
Tutor Prof.ssa ALABRESE, MARIAGRAZIA
Relatore Prof. TOMEI, GABRIELE
Presidente Prof.ssa HENRY, BARBARA
Membro Prof. BRESSANELLI, Edoardo
Membro Prof.ssa LORETONI, ANNA
Membro Prof. DE GUTTRY, ANDREAS M.T.
Membro Prof.ssa CRISTIANI, ELOISA
Membro Prof. SOMMARIO, EMANUELE GIUSEPPE
Parole chiave
  • aree interne
  • immigrazione
  • inner areas
  • migration studies
  • super-diversity
Data inizio appello
01/12/2020;
Disponibilità
completa
Riassunto analitico
The work aims to understand diversification processes in Italian inner areas through a super-diversity lens, by testing the enforceability of this approach outside the traditional context of global cities. The main research questions concern if rural and peripheral localities in Italy are experiencing diversification processes to the point that it can be possible to apply super-diversity framework and which are peculiar or common patterns of these processes compared to other types of localities. The first part focuses on the development of a comprehensive theoretical approach to super-diversity through the integration of other theoretical frameworks, that can allow to overcome some limitations of the concept, especially those related to the understanding of inequalities. Moreover, academic literatures on urban scale and New Immigration Destinations are also used to further reframe super-diversity outside urban environments. The second part deals with the Italian context, by using quantitative and comparative methods to understand diversification patterns in rural and peripheral areas, their peculiarities compared to urban centres and the possible consequences.
File