Tesi etd-11132020-234507
Link copiato negli appunti
Tipo di tesi
Corso Ordinario Secondo Livello
Autore
VICARI, ELENA
URN
etd-11132020-234507
Titolo
Mechanistic modeling suggests that low-intensity focused ultrasound can selectively recruit myelinated or unmyelinated nerve fibers
Struttura
Cl. Sc. Sperimentali - Ingegneria
Corso di studi
INGEGNERIA - INGEGNERIA
Commissione
relatore Prof. CIPRIANI, CHRISTIAN
Relatore Prof. MICERA, SILVESTRO
Presidente Prof. FRISOLI, ANTONIO
Membro Prof. STEFANINI, CESARE
Membro Dott. AVIZZANO, CARLO ALBERTO
Membro Prof. BUTTAZZO, GIORGIO CARLO
Membro Prof. CASTOLDI, PIERO
Membro Prof. CUCINOTTA, TOMMASO
Membro Prof. DI PASQUALE, FABRIZIO CESARE FILIPPO
Membro Prof.ssa MENCIASSI, ARIANNA
Relatore Prof. MICERA, SILVESTRO
Presidente Prof. FRISOLI, ANTONIO
Membro Prof. STEFANINI, CESARE
Membro Dott. AVIZZANO, CARLO ALBERTO
Membro Prof. BUTTAZZO, GIORGIO CARLO
Membro Prof. CASTOLDI, PIERO
Membro Prof. CUCINOTTA, TOMMASO
Membro Prof. DI PASQUALE, FABRIZIO CESARE FILIPPO
Membro Prof.ssa MENCIASSI, ARIANNA
Parole chiave
- electrical stimulation
- LIFUS
- modeling
- neuromodulation
- peripheral fiber
- SONIC model
- ultrasound
Data inizio appello
14/12/2020;
Disponibilità
completa
Riassunto analitico
Focused ultrasound stimulation has recently emerged as a promising selective, reversible, and non-invasive neuromodulation technique. However, model predictions concerning the behaviour of morphologically realistic neural structures are still not available.
For this reason, we developed a computational framework to model intramembrane cavitation in multi-compartmental, morphologically-realistic neuronal representations, and used it to investigate the response of peripheral axons to spatially-varying pressure fields. Our model predictions show that ultrasonic stimulation offers distinct parametric sub-spaces to selectively recruit myelinated or unmyelinated neural fibers and modulate their spiking activity over physiologically relevant regimes.
This singular feature suggests that acoustic stimulation could preferentially target nociceptive and sensory fibers to enable peripheral therapeutic applications not addressable by electric stimulation. These results open up new opportunities for the development of more selective and effective peripheral neuroprostheses.
For this reason, we developed a computational framework to model intramembrane cavitation in multi-compartmental, morphologically-realistic neuronal representations, and used it to investigate the response of peripheral axons to spatially-varying pressure fields. Our model predictions show that ultrasonic stimulation offers distinct parametric sub-spaces to selectively recruit myelinated or unmyelinated neural fibers and modulate their spiking activity over physiologically relevant regimes.
This singular feature suggests that acoustic stimulation could preferentially target nociceptive and sensory fibers to enable peripheral therapeutic applications not addressable by electric stimulation. These results open up new opportunities for the development of more selective and effective peripheral neuroprostheses.
File
Nome file | Dimensione |
---|---|
Tesi_Vicari.pdf | 8.52 Mb |
Contatta l'autore |